
RCC2 ManualRCC2 ManualRCC2 ManualRCC2 Manual

1-Sep-2015 E.G.Judd & J.Engelage

DescriptionDescriptionDescriptionDescription

General

The RCC2 is a 6U VME module (see Figure 1) that has been created to

provide a centralized clock source for the STAR experiment. Its primary

function is to receive the RHIC clock from CAD and distribute it, with

the correct phases, to all electronic clients at STAR. Alternately, if no

clock signal is available from CAD, a local oscillator on the RCC2 can

provide the heartbeat for the experiment. To accomplish these tasks,

the RCC2 has been designed with a Xilinx FPGA to control the

assignment of inputs, output delays and other internal functions. The

user controls these assignments by depositing desired values in specific

registers that are defined through VHDL firmware coded for the RCC2

by Eleanor Judd. The firmware version running on the FPGA can be read

from register 0 (0x0). The RCC2 also contains a standalone Linux system

with a fully functional Ethernet interface and Web server. As such, it is

possible to use these boards in a standalone application needing only a

+5V (1.5A) supply without any supporting VME infrastructure required.

Inputs

The RCC2 has five (5) possible clock sources, and three (3) sources of

control signals. The five clock sources are shown in Table 1. The clock

sources are user selectable by writing the values to the Input Selection

register as shown in Table 1.

Table 1: Available RCC2 clock sources Figure 1

Clock SourceClock SourceClock SourceClock Source locationlocationlocationlocation 0x0C register 0x0C register 0x0C register 0x0C register

valuevaluevaluevalue

Local Oscillator (10MHz) On board 0

External TTL (TTL clk in) Front panel Lemo 1

RHIC clock (from V124) Front panel twin-ax 2

10-pin PECL (from RCF2) Front Panel IDC 3

Fiber (Not implemented yet) Front Panel ST 4

 Control Sources

Control signals can be supplied over VME or Ethernet, via the 10-pin PECL input, or via the front

panel fiber input. Only the 10-pin PECL (3) and fiber (4), which is not yet implemented, are

available for running the RCC2 in slave mode. If the RCC2 is in slave mode and the 10-pin PECL

clock is selected then the control signals that come with that clock will be passed on to all clients.

If the RCC2 is in slave mode and the Fiber clock is selected then the control signals that come over

the fiber with that clock will be passed on to all clients. In Master mode the user must supply the

control signals over VME or Ethernet. Master or Slave mode is selected by writing to the Mode

Selection register at address 0x08.

Control signals include Run/Stop, Address Latch, Halt, and Test. The Run/Stop control signal is

used to place trigger electronics into Run or Load mode. Configuration of some clients (e.g. DSMs)

can only be performed by the user when those clients are in Stop Mode. Activating the Address

Latch causes the current working address to be stored in a register on each of the client boards

(e.g. 0xYY60001C for DSMs and 0xYY000158 for the TCU). The Address Latch is used to check

address alignment on all trigger clients, and for other diagnostic tests of the DSMs and TCUs. The

Halt signal was used in the past to stop data taking and freeze the trigger system if the readout time

had exceeded 7ms and the data buffers were in jeopardy of being overwritten. The Test pulse is a

new feature that can be used to strobe test pulse output from the RCC2. It expected to be used to

strobe calibration LEDs on trigger detectors and for other diagnostic tests.

Outputs

The RCC2 distributes information in three (3) ways: from the front panel, via the VME backplane,

and through Ethernet. There are two types of output information served from the front panel:

visual and electronic. Visual output information displayed by LEDs on the front panel is listed in

Table 2:

Stop/Run Indicates whether RCC2 broadcasting STOP (amber) or RUN(green) level to clients

CFG Lights (red) if Control FPGA on RCC2 is not configured

Fuse Lights (red) if power fuse is blown

Clock Src Indicates which clock source is being used (see Table 1 for Definitions)

 Table 2: Front panel LEDs

Electronic output exiting the front panel on lemo connectors includes:

Clk Out Clock signal in TTL format capable of driving 50ohms

Run/Stop Run/Stop level in TTL format

test pulse Emulated PMT-like pulse

 Table 3: Front panel lemo outputs

The RCC2 front panel also contains a micro-B USB connector for RS-232 communication to set up

the ConnectCore Linux board, an RJ-45 connector for 10/100 Base-T Ethernet communication to

the ConnectCore Linux board, and an RJ-11 connector for externally configuring the Control FPGA

and its SPI Memory using Xilinx Impact protocols.

Registers

Control information passed via the VME interface includes the delay settings for the 10 independent

output channels shipped to the P2/J2 interface for RCF2 distribution (see Table 4). The current

RCF2 makes identical A&B outputs for each of these 10 RCC2 channels (with delay settings) and

fans them out onto 10 conductor IDC connectors in PECL format.

Table 4: the thirteen RCC2 Delay Registers

Configuration information is also available via VME registers as described in Table 5. Note, the

Run/Stop register (0xYY000020) reflects the state as specified by the onboard FPGA. It may not

reflect the actual Run/Stop state while the RCC2 is in Slave mode with Input Selection of either 3

or 4.

Global delay 0xYY000030 Delays incoming clock signal to board in ½ns steps

Clock delay 0xYY000034 Delays all outgoing clock signals

Test pulse delay 0xYY000038 Delays output PMT-like pulse in ½ns steps

Group 0 delay 0xYY00003C Delays output RCF2 channel 0 in ½ns steps

Group 1 delay 0xYY000040 Delays output RCF2 channel 1 in ½ns steps

Group 2 delay 0xYY000044 Delays output RCF2 channel 2 in ½ns steps

Group 3 delay 0xYY000048 Delays output RCF2 channel 3 in ½ns steps

Group 4 delay 0xYY00004C Delays output RCF2 channel 4 in ½ns steps

Group 5 delay 0xYY000050 Delays output RCF2 channel 5 in ½ns steps

Group 6 delay 0xYY000054 Delays output RCF2 channel 6 in ½ns steps

Group 7 delay 0xYY000058 Delays output RCF2 channel 7 in ½ns steps

Group 8 delay 0xYY00005C Delays output RCF2 channel 8 in ½ns steps

Group 9 delay 0xYY000060 Delays output RCF2 channel 9 in ½ns steps

Table 5: RCC2 Configuration Registers

Power up defaults

At power up the default clock source is the 10MHz local oscillator. Other default conditions

include:

− Mode selection set to master (0x08 = 1)

− Clock error behavior set to automatically switch to local oscillator on error (0x10 = 0)

− Clock error definition set to produce an error after 12 missed clock ticks (0x14 = 12)

− Run/Stop set to Stop (0x20 = 0)

All 13 delay values described in Table 6 are UNDEFINED at power up and MUST be set. Before

changing Mode Selection to the “slave” mode, the Input Selection (or clock source) must be set to

a source that can also supply control signals (e.g. 10-pin PECL or Fiber). Any other setting will

result in errors in slave mode and cause the unit to revert to “master” mode. If the PECL (#3) or

Fiber (#4) clock source is not specified before Slave mode is selected, the control signals from the

Master WILL NOT be distributed through the Slave. Failure to follow the proper sequence will

result in the slave RCC2 distributing control signals from its own FPGA.

Errors

If an external clock is selected which is not present or is considered unstable then the Clock Error

LED on the RCC2 front panel will light and the Clock error status register (0x18) will be set to a

value of 1. The RCC2 also will revert to using its local oscillator if the Clock error behavior register

(0x10) is set to 0. An external clock is considered unstable if the number of consecutive clock ticks

that are missed is greater than the value specified in the Clock error definition register (0x14).

Note: the digit display will be unchanged. The external clock source that the user selected will

continue to be displayed, regardless of whether the RCC2 has been set to automatically switch to

its local oscillator or not. The digit display will not change until the user actively requests a

different clock input. To recover from this condition, a valid input clock must first be selected via

the Input Selection register (0x0C) and then the Clock error status reset by writing a “1” to the

Reset clock error status register (0x1C).

ID: Name Address Functionality Access

0: Firmware revision 0xYY000000 0xFFFFMMnn-Major(MM) & Minor(nn) revision R

1: Firmware date 0xYY000004 0xFFFFmmdd-Month(mm) & Day(dd) of revision R

2: Mode selection 0xYY000008 0 = Slave mode: 1= Master mode R/W

3: Input Selection 0xYY00000C Clock source (See Table 1) R/W

4: Clock error behavior 0xYY000010 0= auto-switch on error: 1= no auto switching R/W

5: Clock error def. 0xYY000014 D(0:7) Number of missed clock ticks for error R/W

6: Clock error status 0xYY000018 0= No Error: 1= Error R/W

7:Reset clock error 0xYY00001C D0: Reset W

8: Run/Stop 0xYY000020 0= Stop (load) mode: 1= Run mode R/W

9: Address Latch 0xYY000024 D0: Generate address latch pulse W

11: Test Pulse Trigger 0xYY00002C D0: Generate test pulse W

Procedure for starting run

A static binary file internal to the trigger system contains the low-level programming of the trigger

hardware. At run start the information contained in this “Tier1” file is downloaded into the VME

based boards on a crate by crate basis. Since the new RCC2 boards will be hosted in existing VME

crates, the Tier1 file configuration information has been amended to include RCC2 parameters. The

crate configuration files that make up the Tier1 file now contain code similar to the following:

RCC_Number 1

RCC_BASE_ADDRESS 0x25000000

RCC_CLOCK_SRC 2

RCC_MASTER 1

RCC_STOP_RUN 1

RCC_NUM_TICKS 20

RCC_GLOBAL_DELAY 0

RCC_CLOCK_DELAY 0

RCC_DELAY 0 0 0 0 0 0 0 0 0

0

RCC_End

This RCC2 configuration information MUST

appear at the beginning of those files. For the

convenience of the TAC operators, the

RCC_DELAY values (i.e. the phase of the

clock signals assigned in the Tier1 files) can

be overwritten by the Run Control operator.

To accomplish this, from the RunControl

window select “edit configuration”. From the

“edit configuration” GUI choose

“TCD_setup_name” “details”. A screen like

that shown in Figure 2 should appear.

Choose the name in the CFG.RCC_TAC

column that corresponds to the detector

whose TAC setting wants to be changed.

Adjust the “phase” parameter to obtain the

desired RCC2 Delay setting. The phase value

is specified in 0.5ns units. While not

specifically required the convention of setting

the RCC2 VME addresses to 0x25 has been

adopted.

 Fig 2: RunControl GUI for changing RCC2 delays

At present there are RCC2s installed in the L1, BBC, BBQ, BC1, BCW, BCE, MIX, MXQ and

FMS crates. Table 6 contains the RCF2 output channel assignments for those crates.

RCC2

Chnl #

L1

(master)

BBC BBQ BC1 BCW BCE MIX MXQ FMS

(dual out)

0A
BC1 RCC2 TF102 QT1 BOC

B
FMS RCC2 QT2 BOC

1A
BCE RCC2 BBQ BOC EE005 BW013 BE013 EM202 MXQ BOC FM101

B
BCW RCC2 EE006 BW014 BE014 MT201 FM103

2A
 VPD TAC EE001 BW009 BE009 FM009

B
TCUR EE002 BW010 BE010 FM010/003

3A
BX201 ZD101 BC105 BW005 BE005 FE101 FM005

B
ST201 VP101 BC106 BW006 BE006 FM006/001

4A
TF201 BB101 BC101 BW001 BE001 MT101

B
VT201 BB102 BC102 BW002 BE002 TF101

5A
DQ301 EE009 P2P TAC QT3 BOC

B
RAT QT4 BOC

6A
BBC RCC2 BBC TAC EE007 BW015 BE015 FEQ-BOC MTD TAC FM104

B
BBQ RCC2 EE008 FM102

7A
MIX RCC2 ZDC TAC EE003 BW011 BE011 TF005 VPD TAC FM011/004

B
MXQ RCC2 EE004 BW012 BE012 TF006 FM012

8A
BX202 EE101 BW007 BE007 TF003 FM007/002

B
TCU EE102 BW008 BE008 TF004 FM008

9A
EM201 BC103 BW003 BE003 TF001 /FPS

B
FM201 BC104 BW004 BE004 TF002

Table 6: table of RCC2s vs output clients

New FeaturesNew FeaturesNew FeaturesNew Features

The RCC2 has several new features and improvements from the original RCC board. A TTL clock

output on the front panel of the new RCC2 allows easy access to the experiment clock pulse for

timing in inputs, triggering scopes and driving other equipment. A new “test pulse” circuit has been

added to mock up a photomultiplier signal in sync with the experiment clock. This mock pulse can

be input to QT boards to simulate trigger detector pulses so as to test the entire chain of trigger

electronics from QT input to TCU output. The mock pulse can be fired as a single shot (0x6C=2) or

set to “free running” (0x6C=1). Both the magnitude (12bits) and frequency (16bits) is user settable

from -50mV to -1V and 1Hz to 588KHz (see Tables 7 & 8). Default condition is for the mock pulse

to be turned off (0x6C=0).
Pulse Height (mV)Pulse Height (mV)Pulse Height (mV)Pulse Height (mV) 0x64 Register Value0x64 Register Value0x64 Register Value0x64 Register Value

-45mV 0x8F (lower limit)

-100mV 0x13F

-250mV 0x2DF

-500mV 0x54F

-1120mV 0xCFF(upper limit)

Table 7: Test pulse height vs Register value Figure 3: pulse height as a function of reg value

If a specific pulse height not given in the table is required use the plot in figure 3 or the following

equation to obtain the register value to produce the desired pulse height:

Register Value = 433.6E-6(pulse ht)**2 + 2.413(pulse ht) + 56

Pulse FrequencyPulse FrequencyPulse FrequencyPulse Frequency 0x68 Register Value0x68 Register Value0x68 Register Value0x68 Register Value

1kHz 0xFD80

5kHz 0xFF82

20kHz 0xFFE0

100KHz 0xFFF9

588KHz 0xFFFE(upper limit)

Table 8: Test pulse frequency vs Register Value Figure 4: pulse frequency vs register value

If the frequency desired is not given in the table it can be estimated from the plot in figure 4 or

obtained using the following equation:

log(0xFFFF-RegVal) = 5.8468 - 1.0135*log(frequency)

Register Value = 0xFFFF – 10**[5.8468 – 1.0135*log(frequency)]

Address Monitor

An address monitoring feature was added in version 6.01 of the RCC2 control code to help identify

any data overwrites. This monitor features a 32 bit counter, composed of two registers, 0x78 and

0x7C, that contain the LSB 16 bits and MSB 16 bits, respectively. The monitor also contains a

third register, 0x74, to control resetting the counter and recording instantaneous counter values.

At configuration, both RCC2 local address registers are cleared by writing a “1” to 0x74. When

the run starts, the count will begin to increment by one every tick of the RHIC clock. When an

event readout is initiated, the DSM and QT boards are read in each crate. At the end of readout,

for each crate that contains an RCC2, a “2” is written to the RCC2 Address Control register (0x74)

to save the instantaneous value of that counter. The values in the Local Address registers (0x78 &

0x7c) for each crate are then read and placed in the trigger data block before being shipped to L2

over STP. The L2 machine receives all the counter values from those trigger crates as well as the

counter from the L1 crate bunch-crossing DSMs. The bunch crossing DSMs maintain a 48-bit

counter whose readout marks when the event was triggered. A future L2 or HLT analyzer can be

written to use the information from the bunch crossing DSMs of when the event was triggered and

the RCC2s information of when each crate finished reading out its data to monitor and flag any data

overwrites.

ConnectCore

The RCC2 incorporates a ConnectCore 9P-9215 network-enabled ARM9 module

(http://www.digi.com/products/model?mid=3187) that allows the board to be operated

independent of a VME processor. The 9P-9215 contains an embedded linux system that can be

configured via a micro usb connector on the RCC2 front panel using RS-232. To setup the Ethernet

connection set your RS-232 device for 38400 baud, 8 data bits, 1 stop bit, and no parity.

Once communication has been established, configure IP address (in the boot loader shell type)

nvram set network ip1= 128.3.128.129

nvram set network netmask1=255.255.252.0

nvram set network gateway=128.3.128.1

nvram set network dns1=128.3.34.186

 nvram save

Issue a “reboot” to reset the ConnectCore to the new values. Once the ConnectCore Ethernet is

configured and cabled the RCC2 is accessible directly via web or ssh from the Ethernet. C based

code can be cross compiled using the DigiEl-4.2 cross compiler on either of the startrg machines.

1. create a remote configuration

1. select “Device Options” -> “Device Manager”

2. in “Remote Configurations” tree, select “DigiEL”, click “new”. In “Name” edit box,

enter the name “myTarget”

3. on “General” tab, in the “IP Address” field enther IP of the target (128.3.128.XXXX)

see 8.13.3 above

4. on “File Transfer” tab select “Use FTP as default file transfer mechanism”. In

“Authentication” select “trg” and <passwd>.

5. Click on “Hardware”. Specify “Processor” as XXXX, “Module” as XXXX, and Base

Board” as XXXX

6. create a new application project.

1. Select “File”->”New”->”Project” to diplay the “New Project” wizard. Select

template and click “next”.

2. Select “C programmed Hello World” and click “next”. Then click “finished”

